Symbol of the Government of Canada

WarningThis page has been archived.

Archived Content

Information identified as archived on the Web is for reference, research or recordkeeping purposes. It has not been altered or updated after the date of archiving. Web pages that are archived on the Web are not subject to the Government of Canada Web Standards. As per the Communications Policy of the Government of Canada, you can request alternate formats on the "Contact Us" page.

Archived - Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish

Bonamia ostreae of Oysters

Category | Common Name | Scientific Name | Distribution | Host Species
Impact on Host | Diagnostic Technique | Methods of Control | References | Citation


Category

Category 2 (In Canada and of Regional Concern)

Common, generally accepted names of the organism or disease agent

Microcell disease, Bonamiasis, Bonamiosis, Haemocyte disease of flat oyster, Haemocytic parasitosis.

Scientific name or taxonomic affiliation

Bonamia ostreae (Pichot et al. 1980). Results of initial ultrastructural studies suggesting that this protist was affiliated with the Haplosporidia despite the lack of a spore stage (Bonami et al. 1985, Brehlin et al. 1982). This taxonomic affiliation was subsequently confirmed by DNA analysis (Carnegie et al. 2000b, Reece et al. 2004, Lpez-Flores et al. 2007). Related species include Bonamia exitiosa a pathogen of New Zealand dredge oysters Ostrea chilensis, Bonamia (=Mikrocytos) roughleyi a pathogen of Sydney rock oysters Saccostrea glomerata, Bonamia perspora a parasite of the crested or horse oyster Ostreola equestris and other unidentified Bonamia spp. from various species of oysters in distant locations.

Geographic distribution

Western Europe along the coast from Spain to Denmark, Ireland and Great Britain (excluding Scotland and Wales). Bonamis ostreae was reported for the first time from Morocco in 2005 (Culloty and Mulcahy 2007) and was detected in archived (in 1990) samples of Ostrea edulis from the Manfredonia Gulf (Adriatic Sea) of Italy and again detected along with Bonamia exitiosa in a few (3 of 750) O. edulis collected in 2007 (Narcisi et al. 2010). Earliest records were from the west (California and Washington) and east (Maine) coasts of the USA. In California during the mid 1960s, Katkansky and Manzer (1967) reported high mortalities and heavy infections of microcells in O. edulis that had originated from Milford, Connecticut a few years earlier. In both Washington and Maine, the prevalence of infection is usually low and heavy infections are rare. Current evidence suggests that B. ostreae was inadvertently introduced into Maine, Washington and Europe from California by the translocation of infected O. edulis in the late 1970s (Elston et al. 1986, Friedman and Perkins 1994, Cigarra and Elston 1997). In the fall of 2004, this parasite was detected for the first time in O. edulis farmed in British Columbia, Canada (Marty et al. 2006).

Host species

Ostrea edulis and also known to infect Ostrea angasi, Ostrea chilensis, (=Tiostrea chilensis, =Tiostrea lutaria, =Ostrea lutaria), Ostrea puelchana, Ostrea denselamellosa and Crassostrea ariakensis (=rivularis), and Crassostrea angulata (Grizel et al. 1982, Carnegie and Cochennec-Laureau 2004). The Pacific oyster, Crassostrea gigas (Renault et al 1995, Cao et al. 2009, Lynch et al. 2010), mussels, Mytilus edulis and Mytilus galloprovincialis, and clams, Ruditapes decussatus and Venerupis (=Ruditapes) philippinarum could not be naturally nor experimentally infected and these bivalves did not appear to act as vectors nor intermediate hosts for the parasite (Culloty et al. 1999). However, C. gigas may act as a carrier or reservoir host of B. ostreae as indicated by Lynch et al. (2010) who reported detecting positive Polymerase chain reaction (PCR) signal and visualized a few B. ostreae-like cells in haemocytes and extracellularly in two C. gigas. Microcells in the vesicular connective tissue cells of Ostrea conchaphila (=Ostrea lurida) from Oregon, USA were speculated to be B. ostreae (Farley et al. 1988). However, Elston (1990) indicated that although experiments suggest that O. conchaphila may contract the disease, infection has not been positively demonstrated and Arzul et al. (2005a) could not infect O. conchaphila by cohabitation for 11 months with diseased O. edulis.

Impact on the host

Thebault et al. (2003) listed and applied 24 epidemiological and experimental criteria to demonstrate that B. ostreae was the infectious agent responsible for mass mortalities of O. edulis. Bonamia ostreae, in conjunction with earlier epizootics caused by Martelia refringens, caused a drastic drop in the French production of O. edulis from 20,000 t per year in the 1970's to 1,800 t in 1995 (Boudry et al. 1996; Arzul et al. 2005b, 2006). Bonamia ostreae has also had a significant negative impact on O. edulis production throughout its distribution range in Europe (Tig et al. 1981, 1982; Grizel 1983, Culloty and Mulcahy 2007). Although many infected oysters appear normal, others may have yellow discolouration and/or extensive lesions (i.e. perforated ulcers) in the connective tissues of the gills, mantle and digestive gland. Pathology appears correlated to haemocyte destruction and diapedesis due to proliferation of B. ostreae (Balouet et al. 1983, Berthe 2004). The transmission of infection between oysters is direct with no requirement for an intermediate host (Tig et al. 1982, Tig and Grizel 1982, Poder et al. 1983, Hervio et al. 1995, Culloty et al. 1999) and this has been experimentally demonstrated in the field as well as by cohabitation and injection in the laboratory (Bachre et al. 1986, Lallias et al. 2008). However, the possible involvement of a carrier/reservoir host should not be ruled out (Lynch et al. 2006, 2010). When benthic macroinvertebrates and zooplankton from a B. ostreae-endemic area were screened for the presence of parasite DNA, using polymerase chain reaction (PCR), 8 benthic macroinvertebrates and 19 grouped zooplankton samples gave positive results, and in the laboratory the transmission of B. ostreae was effected to two nave O. edulis cohabiting in the laboratory with the brittle star, Ophiothrix fragilis (Lynch et al. 2007). Although these positive results with alternate hosts could be indicative of parasitism, it is equally as plausible that the animals were only casually associated with B. ostreae or had consumed infected oysters (Culloty and Mulcahy 2008).

Infection was demonstrated to result in the increase in the number of tissue infiltrating haemocytes (granulocytic reaction) (Balouet and Poder 1985, Cochennec-Laureau et al. 2003). Although some flat oysters die with light infections, others succumb to much heavier infections. Heavily infected oysters tend to be in poorer condition than uninfected oysters. In one study, the presence of Bonamia was better related to size than to age of O. edulis and infection level was statistically independent of gonadal development stage (Cceres-Martnez et al. 1995). In another study, prevalence was highest in the largest oysters in spring and declined disproportionately in autumn, possibly due to high mortality of large oysters before autumn, suggesting that prevalence depends on oyster age (Engelsma et al. 2010). However, Robert et al (1991) and Culloty and Mulchy (1996) found that two years appeared to be the critical age for disease development in O. edulis in the Bay of Arcachon, France and on the south coast of Ireland, respectively. Nevertheless, both 0+ and 1+ year-old O. edulis are susceptible to infection and can develop a high prevalence and intensity of infection over a six-month period with associated mortalities (Lynch et al. 2005a, b; Lallias et al. 2008). Arzul et al. (2011) demonstrated that larvae of O. edulis can be infected with B. ostreae in the epithelium surrounding their visceral cavities while being held within the pallial cavity of infected mother oysters. Larvae might thus contribute to the spread of the parasite during their planktonic life. Some studies reported a seasonal pattern of prevalence and mortality, with highest levels occurring in autumn-winter (Montes 1990, Van Banning 1991, Culloty and Mulcahy 1996). In France, transmission occurred throughout the year but rates of infection seemed to be less from July to November (15% prevalence compared to 50% prevalence during March to June) (Tig and Grizel 1982). Also in marine Lake Grevelingen in the Netherlands, B. ostreae was detected in flat oysters throughout the year with a higher prevalence in spring than in autumn (Engelsma et al. 2010). Male and female oysters were equally affected (Culloty and Mulchy 1996).

In vitro tests were used to determine that haemocytes of C. gigas were able to bind more B. ostreae than were haemocytes of O. edulis (Fisher 1988). This difference in the ability of haemocytes to bind the parasite in conjunction with the apparent inability of O. edulis haemocytes to digest the parasites once they are ingested (Balouet et al. 1983, Chagot et al. 1989, Hervio et al. 1989, Chagot et al. 1992, Xue and Renault 2000) may be factors relevant to the differences in susceptibility to infection and disease development in the two species of oysters. Cochennec-Laureau et al. (2003) reported that the proportion of granulocytes (granulated haemocytes) in O. edulis decreased with infection possibly as a result of these cells being destroyed or degranulated by B. ostreae suggesting that hyalinocytes (agranular haemocytes) may be involved in parasite survival and/or development. Da Silva et al. (2008) also found a similar correlation and supported the hypothesis that a high percentage of granulocytes and low percentage of hyalinocytes in a stock of O. edulis would enhance oyster immune ability and, consequently, would contribute to lower susceptibility to disease and longer lifespan. Insignificant correlation was found between haemolymph protein concentration and lysozyme levels and infection of O. edulis by B. ostreae (Cronin et al. 2001). From the results of in vitro experiments, Morga et al. (2009) suggested that B. ostreae actively contributed to the modification of haemocyte activities (decrease in non specific esterase activities and reactive oxygen species production) in order to ensure its own intracellular survival.

Diagnostic techniques

Gross Observations: Bonamiosis is sometimes accompanied by yellow discoloration and extensive lesions on the gills and mantle of O. edulis infected with B. ostreae. However, most of the infected oysters appear normal (Arzul and Joly 2011).

Tissue Imprint: Make acetone- (or methanol-) fixed impression smears from gill or heart tissue (preferably the ventricle since the auricles contain an abundance of serous cells which make detection of the parasite difficult). Stain with Wright, Wright-Giemsa, May-Grunwald-Giemsa or equivalent stain (e.g., Hemacolor, Merck; Diff-QuiK, Baxter). Examine for 2-5 m spherical or ovoid organisms with a central nucleus within or outside the haemocytes (Arzul and Joly 2011). (Note: the organisms are enlarged by this method compared to those in fresh or histological preparations.) This method will also detect B. ostreae in hearts of oysters frozen and stored at -20 C for at least four years and held at 4 C for several hours before testing. Zabaleta and Barber (1996) observed that results obtained from the examination of stained haemolymph smears (histocytology) and histological preparations of an infected O. edulis populations were the same but suggested that histology was preferred for detecting light infections. O'Neill et al. (1998) recommended that the ventricular heart smear technique be used in conjunction with either haemolymph smears or histology to increase the possibility of detecting light infections. Culloty et al. (2003) indicated that the stained heart smear technique is not reliable for detecting latent infections. Lynch et al. (2008) claimed that heart smear examination was the most sensitive individual technique compared to histology, a Polymerase chain reaction (PCR) test and an in situ hybridization (ISH) assay, but a greater sensitivity of detection was obtained when results of heart smear and PCR screening were combined.

Bonamia ostreae
Click image for details
Figure 1. Bonamia ostreae within haemocytes (arrows) and extracellular (arrow heads) in a heart imprint from a heavily infected Ostrea edulis. Hemacolor stain.

Histocytology: Haemolymph is withdrawn from the adductor muscle into an anticoagulent using a syringe and needle (21 Gauge). The haemocytes are placed (by cytocentrifugation or cell adhesion) in a monolayer onto poly-L-lysine coated glass slides and stained and examined as for tissue imprints. Da Silva and Villalba (2004) found this technique to be more sensitive in detecting B. ostreae than tissue imprints and histology.

Histology: Examine haematoxylin and eosin stained tissue cross-sections for tiny protozoa (2-4 m in diameter) within haemocytes. Bonamia ostreae is distributed systemically in advanced infections (Balouet and Poder 1985). In early infections, B. ostreae are often observed within haemocytes, associated with dense focal haemocyte infiltrations in the connective tissue of the gill and mantle, and in the vascular sinuses around the stomach and intestine (Bucke 1988). Bachre et al. (1982a) preferred stained imprints of gill tissue over histological examination of the digestive gland for the diagnosis of B. ostreae. Arzul and Joly (2011) indicated that histopathology appears more reliable than tissue imprints for the detection of the parasite in case of low level of infections. However, tissue imprints are more rapid and less expensive than histopathology. Van Banning (1990) proposed that B. ostreae was an ovarian tissue parasite for part of its life cycle.

Figure 2a and 2b. Bonamia ostreae (arrows) within a few haemocytes in haemal spaces within the connective tissue of the mantle of Ostrea edulis. Haematoxylin and eosin stain. 
Click image for more detail.
Figure 2a. Bonamia ostreae (arrows) within a few haemocytes in haemal spaces within the connective tissue of the mantle of Ostrea edulis. Haematoxylin and eosin stain.
Figure 2a and 2b. Bonamia ostreae (arrows) within a few haemocytes in haemal spaces within the connective tissue of the mantle of Ostrea edulis. Haematoxylin and eosin stain.
Click image for more detail. 
Figure 2b. Bonamia ostreae (arrows) within a few haemocytes in haemal spaces within the connective tissue of the mantle of Ostrea edulis. Haematoxylin and eosin stain.
Figure 3. Bonamia ostreae (arrows) in haemocytes within an accumulation of haemocytes in the connective tissue of a heavily infected Ostrea edulis. Haematoxylin and eosin stain.
Click image for more detail. 
Figure 3. Bonamia ostreae (arrows) in haemocytes within an accumulation of haemocytes in the connective tissue of a heavily infected Ostrea edulis. Haematoxylin and eosin stain.

Electron Microscopy: Uninucleate, diplocaryotic and plasmodial stages with 3 to 5 nuclei have been described and illustrated (Pichot et al. 1980, Comps et al. 1980, Brehlin et al. 1982, Bonami et al. 1985, Montes et al. 1994). Intracellular structures include mitochondria, haplosporosomes, Golgi apparatus and persistent intranuclear microtubules. Two forms of B. ostreae were described: dense forms, 2-3 m in diameter with cytoplasm rich in ribosomes, haplosporosomes and one or two mitochondria; and clear forms, 2-4 m in diameter with a large nucleolus in the nucleus (Grizel 1987, Bucke 1988). Transmission electron microscopy is not recommended as a diagnostic technique because it is time consuming and not practical for routine application but is recommended when Bonamia like parasites are described in a new host species (Arzul and Jolu 2011). Although Hine et al. (2001) presented ultrastructural differences between B. ostreae and B. exitiosa, Narcisi et al. (2010) found that the ultrastructural characteristics of B. exitiosa occurring in Italy were so variable that they cannot be used to definitively identify a Bonamia species. Montes et al. (1994) observed B. ostreae within branchial epithelial cells of O. edulis.

Immunological Assay: An immunofluorescent technique based on monoclonal antibodies was developed by Mialhe et al. (1988b). However, this technique gave unclear results when tested extensively on oysters from Maine, USA (Zabaleta and Barber 1996). Although direct monoclonal antibody sandwich immunoassay for the detection of B. ostreae in haemolymph samples of  O. edulis was developed (Cochennec et al. 1992) and marketed commercially for a few years in the mid 1990s, it is no longer available on the market.

DNA Probes: Segments of the ribosomal RNA locus (including parts of the small subunit (SSU rDNA or 18S rDNA) and internal transcribed spacers (ITS1)) and two actin genes have been sequenced by polymerase chain reaction (PCR) and molecular cloning (Lpez-Flores et al. 2007). A PCR reaction specific for a rDNA amplicon (528 base pairs (bp) spanning 341 bp of 18S rDNA and 187 bp of ITS1) with a gene sequence resembling that belonging to members of the Phylum Haplosporidia was identified and found to detect the parasite in naturally infected O. edulis in Maine, USA (Carnegie et al. 2000a, b). This amplicon has also been developed into an in situ hybridization (ISH) assay (Carnegie et al. 1999, 2001, 2003). The PCR assay proved to be more sensitive and less ambiguous than standard cytological (tissue imprint) techniques (Carnegie et al. 2000b, Carnegie and Cochennec-Laureau 2004, Lynch et al. 2005b) and histology (Balseiro et al. 2006). Another DNA probe, that amplifies a 300 base pair product, was identified from the same area of the genome by Cochennec et al. (2000). In addition to detecting B. ostreae, these probes also detected Bonamia exitiosa and Haplosporidium nelsoni but B. ostreae can be differentiated from the other Haplosporidia by the application of restriction fragment length polymorphism (RFLP) analysis (Hine et al. 2001, a standard operating procedure for this technique is presented at http://www.eurl-mollusc.eu/SOPs). Marty et al. (2006) developed a real-time TaqMan PCR assay that amplified a 68-bp target DNA fragment of the 18S rDNA and was designed not to amplify DNA of other Haplosporidia. This assay proved to have greater diagnostic sensitivity than histopathology even when used to analyse paraffin sections (Marty et al. 2006). Corbeil et al. (2006) also developed a real-time TaqMan PCR assay for the detection of Bonamia spp. (but not Haplosporidium nelsoni nor Haplosporidium costale) that was comparable to conventional PCR in sensitivity but produced more rapid results with a low risk of sample cross-contamination and can be optimised to determine the intensity of infection. The real-time PCR assay developed by Robert et al. (2009) did not cross-react with closely related parasites, including Bonamia exitiosa, was at least 10-fold more sensitive than conventional PCR (performed according to Cochennec et al. (2000)) and was quantitative. If PCR was used to detect infection beyond the know geographic and host range of B. ostreae, visualization of the parasite and/or sequencing the product is required for diagnosis and to confirm that the DNA detected by PCR is that of B. ostreae (Culloty and Mulcahy 2007, Narcisi et al. 2010). In general, DNA based diagnosis tools need validation, specificity definition and further development prior to full implementation (Renault 2008). Nevertheless, ISH with a digoxigenin (DIG) labelled probe has been employed to locate light infections of B. ostreae within histological sections of the gills and epithelium of the digestive tract suggesting that these tissues may be the sites of first infection. Also, fluorescent ISH using a cocktail of 3 fluorescein labeled probes did not cross-react with H. nelsoni (Carnegie et al. 2003).

Culture: Limited multiplication of B. ostreae from explants of gills from heavily infected oysters was achieved after 3 days in vitro at 20 C (Comps 1983). Protocols for the preparation of purified B. ostreae cell suspensions from infected oysters have been described using a discontinuous density gradient of Percoll (Bachre et al. 1982b, Bachre et al. 1986) and a discontinuous sucrose gradient (Mialhe et al. 1988) The purified cells from both techniques retained infectivity and ultrastructural morphology and have been used in cytochemistry assays of the parasite (Hervio et al. 1991). Purified isolates have also been used to determine that in vitro, B. ostreae had a significantly lower survival at 25C compared to 4C and 15C (especially after 48 hours of incubation), and high salinities (greater than or equal to 35 grams per litre salt in seabed borewater supplemented with natural salt) favoured parasite survival (Arzul et al. 2009).

Methods of control

Ensure that no flat oysters from the United States of America or Europe are introduced into areas where bonamiasis is not known to occur. Pathogen transfers via movements of aquatic organisms appear to be a major cause of epizootics (Renault 2008). Some oysters from endemic areas may be asymptomatic and show no sign of Bonamia using routine detection techniques. Because larvae of O. edulis can be infected with B. ostreae while being held within the pallial cavity of infected mother oysters, the transfer of larvae for aquaculture purpose should be controlled especially when they are exported from areas where B. ostreae is present (Arzul et al. 2011). If infected animals are introduced into a nave population, high mortalities can be expected for at least 6 years (van Banning 1985, 1991). To date, there are no known eradication procedures. Despite early attempts to eradicate B. ostreae from the Netherlands (Van Banning 1988), this parasite is now endemic to O. edulis in marine Lake Grevelingen, the Netherlands (Engelsma et al. 2010).

Mortalities due to bonamiasis can be reduced using suspension culture, reduced handling stress and lower stocking densities (Tig et al. 1984). In Galicia, Spain, raft cultured oysters suspended at 1-2 meters depth had lower prevalence of infection and fewer mortalities then cohorts held at 8-9 meters depth suggesting that proximity to the sea floor may be a factor in transmission (Lama and Montes 1993). Subtidal growing areas also appear to be less severely affected than intertidal areas. Oyster seed from natural settlement should be avoided because these oysters tend to be significantly more parasitized than seed produced by hatcheries (Conchas et al. 2003). Montes et al. (2003) observed that O. edulis could be successfully cultured in areas of Galicia, Spain, contaminated with B. ostreae if they were promptly marketed after about 15 to 18 months of culture. Also, Arzul et al. (2006) indicated that bonamiosis kills oysters older than two years of age but O. edulis can reproduce after year one. Thus, oyster stocks that are regularly harvested for further growth or marketing results in the elimination of highly infected oysters. Le Bec et al. (1991) suggested that culturing O. edulis with C. gigas, which are not naturally susceptible to infection, may help to reduce infection in O. edulis. However, in one study, the growth of O. edulis was reduced when they were cultured with C. gigas (Robert et al. 1991). Also, B. ostreae may weaken the competitive ability of O. edulis relative to the introduced Pacific oyster C. gigas, particularly in years with high water temperatures (Engelsma et al. 2010). Despite management practices of reducing stocking densities under suspension culture or selling oysters at a lower weight before significant B. ostreae-induced mortalities occur, the production of O. edulis in Europe has remained low due to bonamiosis (Lallias et al. 2008).

Experimental infection by inoculation of B. ostreae into O. edulis from three separate populations in France found no significant difference in susceptibility between the populations (Bachre and Grizel 1983). However, field studies to investigate the potential disease resistance in a number of O. edulis populations from various locations in Europe indicated that some stocks performed significantly better (determined by prevalence and intensity of infection measurements and cumulative mortality) in some trials than others (Culloty et al. 2004). In Quiberon Bay, France where commercial production of O. edulis depends on the transfer of oysters from other regions of Brittany prior to marketing, despite the risks related to transfers of live molluscs, and where B. ostreae has been detected since 1980, the prevalence of B. ostreae is usually lower than 15% with less severe outbreaks than in the past suggesting that the oysters have developed a relative natural tolerance to the parasite (Arzul et al. 2005b). Also, detection frequencies recorded in the two main grow-out areas of France (Quiberon and Cancale bays) were not significantly correlated suggesting that environmental parameters and aquacultural practices have more impact on the evolution of the disease than initial parasite burden (Arzul et al. 2006). Montes et al. (1996) also reported that in Galicia, Spain, the prevalence of infection in experimentally exposed oysters varied significantly with location.

The breeding of bonamiosis-resistant flat oysters is reported to have some success (Martin et al. 1993; Boudry et al. 1996; Baud et al. 1997; Naciri-Graven et al. 1998, 1999; Culloty et al. 2001; Lallias et al. 2008). However, there is evidence from DNA microsatellite loci analysis that a population bottleneck has occurred during the selection process in some stocks of bonamiosis-resistant O. edulis. The small effective number of breeders are expected to lead to increasing inbreeding and have important consequences for the future management of at least three selected bonamiosis-resistant populations (Launey et al. 2001). Quantitative trait loci (QTL) analyses using a two-stage testing strategy and interval mapping methods were used to detect resistance to B. ostreae in a family of O. edulis derived from a cross between a wild oyster and an individual from a family selected for resistance to bonamiosis (Lallias et al. 2009). Utilizing a proteomic approach, Cao et al. (2009) envisaged the application of two-dimensional electrophoresis to the analysis of haemolymph proteins to understand the interaction between oysters and B. ostreae and to find the bases of tolerance/resistance to bonamiosis. Morga et al. (2010) studied the haemocyte response of O. edulis to B. ostreae at the transcriptome levels based on the use of real time PCR assays and suggested using a combination of glyceraldehyde 3-phosphate-dehydrogenase (GAPDH) and elongation factor 1 alpha (EF1-α) as reference genes (for which they characterized the complete open reading frame (ORF)) when examining expression levels of housekeeping genes in haemocytes of O. edulis. Morga et al. (2011) also used suppression subtractive hybridisation (SSH) to identify five oyster genes (omega glutathione Stransferase (OGST), superoxide dismutase (SOD), tissue inhibitor of metalloproteinase (TIMP), galectin, interferon regulatory factor (IRF-like) and filamin genes) with increased expression in haemocytes infected with B. ostreae. The expressed sequence tags (ESTs) of interest including genes involved in cytoskeleton, respiratory chain, detoxification membrane receptors, and immune system.

A controversial approach to developing bonamiosis-resistant was suggested by Morvan et al. (1994) and Morvan et al. (1997) who determined that B. ostreae and not O. edulis were sensitive to the antimicrobial peptides magainin 1 (originally extracted from the skin of the frog Xenopus laevis) and tachyplesin 1 (extracted from haemocytes of the Japanese horseshoe crab Tachypleus tridentatus), which may provide effective gene sequences that could possibly be used to genetically transform molluscs.

References

Arzul, I. and J.P. Joly. 2011. EURL (European Union Reference Laboratory) for Molluscs Diseases: Bonamia sp. Web page hosted by Ifremer. URL: http://wwz.ifremer.fr/crlmollusc/Main-activities/Tutorials/Bonamia-sp.

Arzul, I., B. Chollet, C. Garcia, M. Robert, J.-P. Joly, L. Miossec and F. Berthe. 2005a. Ostrea conchaphila: a natural host of Bonamia ostreae? Journal of Shellfish Research 24: 638-639. (Abstract).

Arzul, I., L. Miossec, E. Blanchet, C. Garcia, J.P. Joly, C. Francois and F. Berthe. 2005b. A long term study of bonamiosis in Quiberon Bay, France. In: 8th International Conference on Shellfish Restoration. (Brest, France). (For Open Access version of presentation see http://archimer.ifremer.fr/doc/00000/3314/).

Arzul, I., L. Miossec, E. Blanchet, C. Garcia, C. Francois and J.P. Joly. 2006. Bonamia ostreae and Ostrea edulis: a stable host-parasite system in France? In: Proceedings of the 11th Symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Queensland, Australia, 6 - 11 August 2006, Theme 1 - Aquatic animal epidemiology: Crustacean and shellfish disease session, Volume T1-2.4.4: pp. 869-873. (For Open Access version of presentation see http://www.sciquest.org.nz/node/64451 and http://archimer.ifremer.fr/doc/00000/6381/).

Arzul, I., B. Gagnaire, C. Bond, B. Chollet, B. Morga, S. Ferrand, M. Robert and T. Renault. 2009. Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Diseases of Aquatic Organisms 85: 67–75.

Arzul, I., A. Langlade, B. Chollet, M. Robert, S. Ferrand, E. Omner, S. Lerond, Y. Couraleauy, J.P. Joly, C. Franois and C. Garcia. 2011. Can the protozoan parasite Bonamia ostreae infect larvae of flat oysters Ostrea edulis? Veterinary Parasitology 179: 69-76.

Audemard, C., R. Carnegie, N. Stokes, E. Burreson and M. Bishop. 2005. Salinity effects on the susceptibility to and persistence of Bonamia ostreae and Bonamia sp. in Crassostrea ariakensis. Journal of Shellfish Research 24: 639. (Abstract).

Bachre, E. and H. Grizel. 1983 (1985). Receptivite de trois populations naturelles d'hutres plates Ostrea edulis L. au protozoaire Bonamia ostreae (Pichot et al., 1980). Revue des Travaux de l'Institut des Pches Maritimes. 47: 237-240. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/1827/)

Bachre, E., J.-L. Durand and G. Tig. 1982a. Bonamia ostreae (Pichot et Coll., 1979) parasite de l'hutre plate: comparaison de deux mthodes de diagnostic. International Council for Exploration of the Sea CM. 1982/F:28: 10 pp. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/5013/, for electronic version of manuscript see: http://archimer.ifremer.fr/doc/1982/acte-5013.PDF).

Bachre, E., S. Gagneraud, G. Audic and H. Grizel. 1982b. Mise au point de techniques d'isolement de parasites. Compte rendu d'activit . Laboratoire de Pathologie, I. S. T. P. M., La Trinite sur Mer. n 82/2787: 21 pp. (In French, for Open Access version see http://archimer.ifremer.fr/doc/00015/12626/, for electronic version of manuscript see: http://archimer.ifremer.fr/doc/00015/12626/9514.pdf).

Bachre, E., M. Comps and H. Grizel. 1986. Infections experimentales de l'hutre plate Ostrea edulis L. par le protozoaire Bonamia ostreae. In: Vivars, C. P., Bonami, J.-R., Jaspers, E. (eds.). Pathology in marine aquaculture, Special Publication No. 9., European Aquaculture Society, Bredene, Belgium. pp. 127-132. (In French with English abstract).

Balouet, G. and M. Poder. 1985. A consideration of the cellular reactions in bivalve molluscs, with emphasis on haemocytic diseases. In: Ellis, A.E. (ed.) Fish and Shellfish Pathology. Academic Press, London. pp. 381-385.

Balouet, G., J. Poder and A. Cahour. 1983. Haemocytic parasitosis: morphology and pathology of lesions in the French flat oyster, Ostrea edulis L. Aquaculture 34: 1-14.

Balseiro, P., R.F. Conchas, J. Montes, J. Gmez-Len, B. Novoa and A. Figueras. 2006. Comparison of diagnosis techniques for the protozoan parasite Bonamia ostreae in flat oyster Ostrea edulis. Aquaculture 261: 1135-1143.

Baud, J.-P., A. G‚rard and Y. Naciri-Graven. 1997. Comparative growth and mortality of Bonamia ostreae-resistant and wild flat oysters, Ostrea edulis, in an intensive system. I. First year of experiment. Marine Biology 130: 71-79.

Beare, W.E., S.C. Culloty and G. Burnell. 1998. Some observations on spatial and temporal variation in prevalence of infection of Bonamia ostreae (Pichot et al., 1980) in the native flat oyster Ostrea edulis (L.) in Galway Bay, Ireland. Bulletin of the European Association of Fish Pathologists 18: 39-42.

Berthe, F. 2004. Report about mollusc diseaes. Mediterranean aquaculture diagnostic laboratories 49: 33-48. (For Open Access version see http://archimer.ifremer.fr/doc/00000/3300/).

Bonami, J.R., C.P. Vivars and M. Brehlin. 1985. tude d'une nouvelle haplosporidie parasite de l'hutre plate Ostrea edulis L.: morphologie et cytologie de diffrents stades. Protistologica 21: 161-173. (French, English Summary).

Boudry, P., B. Chatain, Y. Naciri-Graven, C. Lemaire and Andrrard. 1996. Genetical improvement of marine fish and shellfish: a French perspective. Proceedings of FOID '96 5: 141-150.

Bougrier, S., G. Tig, E. Bachre and H. Grizel. 1986. Ostrea angasi acclimatization to French coasts. Aquaculture 58: 151-154.

Boulo, V., E. Mialhe, H. Rogier, F. Paolucci and H. Grizel. 1989. Immunodiagnosis of Bonamia ostreae (Ascetospora) infection of Ostrea edulis L. and subcellular identification of epitopes by monoclonal antibodies. Journal of Fish Diseases 12: 257-262.

Brehlin, M., J.R. Bonami, F. Cousserans and C.P. Vivars. 1982. Existence de formes plasmodiales vraies chez Bonamia ostreae parasite de l'hutre plate Ostrea edulis. [True plasmodial forms exist in Bonamia ostreae, a pathogen of the European flat oyster Ostrea edulis.]. Compte Rendu Hebdomadaire des Sances de l'Acadmie des Sances, Paris. Srie III 295: 45-48. (In French with English abstract).

Bucke, D. 1988. Pathology of bonamiasis. Parasitology Today 4: 174-176.

Bucke, D. and S. Feist. 1985. Bonamiasis in the flat oyster, Ostrea edulis, with comments on histological techniques.  In: A.E. Ellis (ed.). Fish and Shellfish Pathology, Proceedings of a Symposium, 20-23 September 1983, Plymouth Polytechnic, Plymouth. Academic Press, London. pp. 387-392.

Bucke, D. and B. Hepper. 1987. Bonamia ostreae infecting Ostrea lutaria in the U.K. Bulletin of the European Association of Fish Pathologists 7: 79-80.

Bucke, D., B. Hepper, D. Key and R.C.A. Bannister. 1984. A report on Bonamia ostreae in Ostrea edulis in the UK. International Council for Exploration of the Sea CM 1984/K:9: 7 pp.

Cceres-Martnez, J., J.A.F. Robledo and A. Figueras. 1995. Presence of Bonamia and its relation to age, growth rates and gonadal development of the flat oyster, Ostrea edulis, in the Ra de Vigo, Galicia (NW Spain). Aquaculture 130: 15-23.

Cao, A., J. Fuentes, P. Comesaa, S.M. Casas and A. Villalba. 2009. A proteomic approach envisaged to analyse the bases of oyster tolerance/resistance to bonamiosis. Aquaculture 295: 149–156.

Carnegie, R. and B. Barber. 1998. Growth, mortality, and Bonamia ostreae prevalence of cultured Ostrea edulis at two sites in the Daramiscotta River, Maine. Abstracts of the First Annual Northeast Aquaculture Conference and Exposition, Rockport, Maine, USA, November 18-19, 1998. pp. 19-20 (Abstract).

Carnegie, R.B. and B.J. Barber. 1999. Impact of Bonamia ostreae on cultured Ostrea edulis at two sites on the Damariscotta River, Maine. Journal of Shellfish Research 18: 296. (Abstract).

Carnegie, R.B. and N. Cochennec-Laureau. 2004. Microcell parasites of oysters: recent insights and future trends. Aquatic Living Resources 17: 519-528.

Carnegie, R.B., D.L. Distel and B.J. Barber. 1997. Amplification and sequencing of the Bonamia ostreae 18S rDNA gene: phylogenetic considerations and applications. Journal of Shellfish Research 16: 328. (Abstract).

Carnegie, R.B., B.J. Barber, D.L. Diste and S.C. Culloty. 1999. Development of PCR and in situ hybridization assays for detection of Bonamia ostreae in flat oysters, Ostrea edulis. Journal of Shellfish Research 18: 711-712. (Abstract).

Carnegie, R.B., B.J. Barber, D.L. Distel and S.C. Culloty. 2000a. Development of a PCR assay for detection of Bonamia ostreae in flat oysters, Ostrea edulis. Journal of Shellfish Research 19: 643. (Abstract).

Carnegie, R.B., B.J. Barber, S.C. Culloty, A.J. Figueras and D.L. Distel. 2000b. Development of a PCR assay for detection of the oyster pathogen Bonamia ostreae and support for its inclusion in the Haplosporidia. Diseases of Aquatic Organisms 42: 199-206.

Carnegie, R.B., B.J. Barber and D.L. Distel. 2001. Detection of the flat oyster (Ostrea edulis) parasite Bonamia ostreae by fluorescent in situ hybridization. Journal of Shellfish Research 20: 542. (Abstract).

Carnegie, R.B., B.J. Barber and D.L. Distel. 2003. Detection of the oyster parasite Bonamia ostreae by fluorescent in situ hybridization. Diseases of Aquatic Organisms 55: 247-252.

Chagot, D., D. Hervio, C. Mourton, V. Boulo, E. Mialhe and H. Grizel. 1989. Interactions between Bonamia ostreae (Ascetospora) and hemocytes of the flat oyster (Ostrea edulis) and the cup shaped oyster (Crassostrea gigas): in vitro analysis of entry mechanisms. Developmental and Comparative Immunology 13: 409.

Chagot, D., V. Boulo, D. Hervio, E. Mialhe, E. Bachre, C. Mourton and H. Grizel. 1992. Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemocytes of Ostrea edulis and Crassostrea gigas (Mollusca: Bivalvia): entry mechanisms. Journal of Invertebrate Pathology 59: 241-249.

Cigarra, J. and R. Elston. 1997. Independent introduction of Bonamia ostreae, a parasite of Ostrea edulis to Spain. Diseases of Aquatic Organisms 29: 157-158.

Cochennec, N., D. Hervio, B. Panatier, V. Boulo, E. Mailhe, H. Rogier, H. Grizel, and F. Paolucci. 1992. A direct monoclonal antibody sandwich immunoassay for detection of Bonamia ostreae (Acetospora) in hemolymph samples of the flat oyster Ostrea edulis (Mollusca: Bivalvia). Diseases of Aquatic Organisms 12: 129-134.

Cochennec, N., T. Renault, P. Boudry, B. Chollet and A. Gerard. 1998. Bonamia-like parasite found in the Suminoe oyster Crassostrea rivularis reared in France. Diseases of Aquatic Organisms 34: 193-197.

Cochennec, N., F. LeRoux, F. Berthe and A. Gerard. 2000. Detection of Bonamia ostreae based on small subunit ribosomal probe. Journal of Invertebrate Pathology 76: 26-32.

Cochennec-Laureau, N., M. Auffret, T. Renault and A. Langlade. 2003. Changes in circulating and tissue-infiltrating hemocyte parameters of European flat oysters, Ostrea edulis, naturally infected with Bonamia ostreae. Journal of Invertebrate Pathology 83: 23-30.

Comps, M. 1983. Culture in vitro de Bonamia ostreae parasite hmocytaire de l'hutre plat Ostrea edulis L. [Culture in vitro of Bonamia ostreae hemocytic parasite of the flat oyster Ostrea edulis L.]. Compte Rendu Hebdomadaire des Sances de l'Acadmie des Sances, Paris. Srie III 296: 931-933. (In French, English Abstract.).

Comps, M. 1985. Haemocytic disease of the flat oyster. In: Sindermann, C.J. (ed), Fiches d'Identification des Maladies et Parasites des Poissons, Crustacs et Mollusques. Conseil International pour l'Exploration de la Mer, Copenhague, Fiche 18: pp. 1-5.

Comps, M., G. Tig and H. Grizel. 1980. tude ultrastructurale d'un protiste parasite de l'hutre Ostrea edulis. Comptes Rendus Acadmie des Sciences Paris, Srie D 290: 383-384.

Conchas, R.F., J. Santamarina, A. Lama, M.A. Longa and J. Montes. 2003. Evolution of bonamiosis in Galicia (NW Spain). Bulletin of the European Association of Fish Pathologists 23: 265-272.

Corbeil, S., I. Arzul, B. Diggles, M. Heasman, B. Chollet, F.C.J. Berthe and M.S.J. Crane. 2006. Development of a TaqMan PCR assay for the detection of Bonamia species. Diseases of Aquatic Organisms 71: 75-80.

Cronin, M.A., S.C. Culloty and M.F. Mulchay. 2001. Lysozyme activity and protein concentration in the haemolymph of the flat oyster Ostrea edulis (L.). Fish and Shellfish Immunology 11: 611-622.

Culloty, S.C. and M.F. Mulcahy. 1996. Season-, age-, and sex-related variations in the prevalence of bonamiasis in flat oyster (Ostrea edulis L.) on the south coast of Ireland. Aquaculture 144: 53-63.

Culloty, S.C. and M.F. Mulcahy. 2007. Bonamia ostreae in the native oyster Ostrea edulis. A review. Marine and Environmental Health Series 29: 1-36.

Culloty, S.C., B. Novoa, M. Pernas, M. Longshaw, M.F. Mulcahy, S.W. Feist and A. Figueras. 1999. Susceptibility of a number of bivalve species to the protozoan parasite Bonamia ostreae and their ability to act as a vector for this parasite. Diseases of Aquatic Organisms 37: 73-80.

Culloty, S.C., M.A. Cronin and M.F. Mulcahy. 2001. An investigation onto the relative resistance of Irish flat oysters Ostrea edulis L. to the parasite Bonamia ostreae (Pichot et al. 1980). Aquaculture 199: 229-244.

Culloty, S.C., M.A. Cronin and M.F. Mulcahy. 2003. Possible limitations of diagnostic methods recommended for the detection of the protistan, Bonamia ostreae in the European flat oyster, Ostrea edulis. Bulletin of the European Association of Fish Pathologists 23: 67-71.

Culloty, S.C., M.A. Cronin and M.F. Mulcahy. 2004. Potential resistance of a number of populations of the oyster Ostrea edulis to the parasite Bonamia ostreae. Aquaculture 237: 41-58.

da Silva, P.M. and A. Villalba. 2004. Comparison of light microscopic techniques for the diagnosis of the infection of the European flat oyster Ostrea edulis by the protozoan Bonamia ostreae. Journal of Invertebrate Pathology 85: 97-104.

da Silva, P.M., P. Comesaa, J. Fuentes and A. Villalba. 2008. Variability of haemocyte and haemolymph parameters in European flat oyster Ostrea edulis families obtained from brood stocks of different geographical origins and relation with infection by the protozoan Bonamia ostreae. Fish and Shellfish Immunology 24: 551-563.

Des Clers, S. 1991. Models for a Bonamia ostreae epidemic in a cohort of cultured European flat oystres, Ostrea edulis. Aquaculture 93: 253-262.

Elston, R.A. 1990. Bonamiasis of the Eurpoean flat oyster. p. 17-21. In: R.A. Elston. Mollusc diseases: guide for the shellfish farmer. University of Washington Press, Seattle.

Elston, R.A., C.A. Farley and M.L. Kent. 1986. Occurrence and significance of bonamiasis in European flat oysters Ostrea edulis in North America. Diseases of Aquatic Organisms 2: 49-54.

Elston, R.A., M.L. Kent and M.T. Wilkinson. 1987. Resistance of Ostrea edulis to Bonamia ostreae infection. Aquaculture 64: 237-242.

Engelsma, M.Y., S. Kerkhoff, I. Roozenburg, O.L.M. Haenen, A. van Gool, W. Sistermans, S. Wijnhoven and H. Hummel. 2010. Epidemiology of Bonamia ostreae infecting European flat oyster Ostrea edulis from Lake Grevelingen, The Netherlands. Marine Ecology Progress Series 409: 131-142.

Farley, C.A., P.H. Wolf and R.A. Elston. 1988. A long-term study of "microcell" disease in oysters with a description of a new genus, Mikrocytos (g. n.) and two new species, Mikrocytos mackini (sp. n.) and Mikrocytos roughleyi (sp. n.). Fishery Bulletin 86: 581-593.

Figueras, A.J. 1991. Bonamia status and its effects in cultured flat oysters in the Ria de Vigo, Galicia (N.W. Spain). Aquaculture 93: 225-233.

Figueras, A. and J.A.F. Robledo. 1994. Bonamia ostreae present in flat oysters (Ostrea edulis) does not infect mussels (Mytilus galloprovincialis). Bulletin of the European Association of Fish Pathologists 14: 98-100.

Fisher, W.S. 1988. In vitro binding of parasites (Bonamia ostreae) and latex particles by hemocytes of susceptible and insusceptible oysters. Developmental and Comparative Immunology 12: 43-53.

Friedman, C.S. and F.O. Perkins. 1994. Range extension of Bonamia ostreae to Maine, U.S.A. Journal of Invertebrate Pathology 64: 179-181.

Friedman, C.S., T. McDowell, J.M. Groff, J.T. Hollibaugh, D. Manzer and R.P. Hedrick. 1989. Presence of Bonamia ostreae among populations of the European flat oyster, Ostrea edulis Linn‚, in California, USA. Journal of Shellfish Research 8: 133-137.

Grizel, H. 1983. Impact de Marteilia refringens et de Bonamia ostreae sur l'ostriculture bretonne. Conseil International pour l'Exploration de la Mer C.M. 1983/Gen:9: 30 pp. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/5924/).

Grizel, H. 1987. Les maladies des mollusques: tiologie et progrs rcents des recherches. Oceanis 13: 357-370. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/5924/).

Grizel, H. 1997. Les maladies des mollusques bivalves: risques et prvention. Revue Scientifique et Technique de l'Office International des Epizooties 16: 161-171.

Grizel, H., M. Comps, D. Raguenes, Y. Leborgne, G. Tige and A.G. Martin. 1982. Bilan des essais d'acclimatation d'Ostrea chilensis sur les cotes de Bretagne. Revue des Travaux de l'Institut des Pches Maritimes. 46: 209-225. (In French with English abstract).

Grizel, H., E. Mialhe, D. Chagot, V. Boulo and E. Bachre. 1988. Bonamiasis: A model study of diseases in marine molluscs. American Fisheries Society Special Publication 18: 1-4.

Hervio, D., E. Bachre, E. Mialhe and H. Grizel. 1989. Chemiluminescent responses of Ostrea edulis and Crassostrea gigas hemocytes to Bonamia ostreae (Ascetospora). Developmental and Comparative Immunology 13: 449. (Abstract).

Hervio, D., D. Chagot, P. Godin, H. Grizel and E. Mialhe. 1991. Localization and characterization of acid phophatase activity in Bonamia ostreae (Ascetospora), an intrahemocytic protozoan parasite of the flat oyster Ostrea edulis (Bivalvia). Diseases of Aquatic Organisms 12: 67-70.

Hervio, D., E. Bachre, V. Boulo, N. Cochennec, V. Vuillemin, Y. Le Coguic, G. Cailletaux, J. Mazuri‚ and E. Mialhe. 1995. Establishment of an experimental infection protocol for the flat oyster, Ostrea edulis, with the intrahaemocytic protozoan parasite, Bonamia ostreae: application in the selection of parasite-resistant oysters. Aquaculture 132: 183-194.

Hine, P.M., N. Cochennec-Laureau and F.C.J. Berthe. 2001. Bonamia exitiosus n.sp. (Haplosporidia) infecting flat oysters Ostrea chilensis in New Zealand. Diseases of Aquatic Organisms 47: 63-72.

Howard, A.E. 1994. The possibility of long distance transmission of Bonamia by fouling on boat hulls. Bulletin of the European Association of Fish Pathologists 14: 211-212.

Hudson, E.B. and B.J. Hill. 1991. Impact and spread of bonamiasis in the UK. Aquaculture 93: 279-285.

ICES. 2004. Trends in important diseases affecting fish and molluscs in the ICES area 1998-2002. International Council for the Exploration of the Sea, ICES Cooperative Research Report No. 265. Copenhagen, Denmark. 26 pp. (Prepared and edited by the Working Group on Pathology and Diseases of Marine Organisms. For electronic publication see: http://www.ices.dk/pubs/crr/crr265/crr265.pdf).

Katkansky, S.C. and D.R. Manzer. 1967. Oyster disease and mortality study. Quarterly reports for the periods January 1 to March 31, 1967 and April 1 to June 30, 1967. MRO Reference numbers 67-8 and 67-20. Department of Fish and Game, Marine Resources Operations Laboratory, U. S. Bureau of Commercial Fisheries, Research Contract No. 14-17-0001-1382.

Katkansky, S.C., W.A. Dahlstrom and R.W. Warner. 1969. Observations on survival and growth of the European flat oyster, Ostrea edulis, in California. California Fish and Game 55: 69-74.

Lallias, D., I. Arzul, S. Heurtebise, S. Ferrand, B. Chollet, M. Robert, A.R. Beaumont, P. Boudry, B. Morga and S. Lapgue. 2008. Bonamia ostreae-induced mortalities in one-year old European flat oysters Ostrea edulis: experimental infection by cohabitation challenge. Aquatic Living Resources 21: 423–439.

Lallias, D., L. Gomez-Raya, C.S. Haley, I. Arzul, S. Heurtebise, A.R. Beaumont, P. Boudry and S. Lapgue. 2009. Combining two-stage testing and interval mapping strategies to detect QTL for resistance to bonamiosis in the European flat oyster Ostrea edulis. Marine Biotechnology 11: 570–584.

Lama, A. and J. Montes. 1993. Influence of depth of culture in the infection of the European flat oyster (Ostrea edulis L.) by Bonamia ostreae. Bulletin of the European Association of Fish Pathologists 13: 17-20.

Launey, S., M. Barre, A. Gerard and Y. Naciri-Graven. 2001. Population bottleneck and effective size in Bonamia ostreae-resistant populations of Ostrea edulis as inferred by microsatellite markers. Genetic Research 78: 259-270.

Lauckner, G. 1983. Diseases of Mollusca: Bivalvia. In: Kinne, O. (ed.) Diseases of marine animals. Volume II: Introduction, Bivalvia to Scaphopoda, Vol. 2. Biologische Anstalt Helgoland, Hamburg. pp. 477-961. (For information pertaining to Bonamia ostreae see pages 577-580).

Le Bec, C., J. Mazurie, N. Cochennec and Y. le Coguic. 1991. Influence of Crassostrea gigas mixed with Ostrea edulis on the incidence of Bonamia disease. Aquaculture 93: 263-271.

Lpez-Flores, L., V.N. Suarez-Santiago, D. Longet, D. Saulnier, B. Chollet and I. Arzul. 2007. Characterization of actin genes in Bonamia ostreae and their application to phylogeny of the Haplosporidia. Parasitology 134: 1941-1948. (For publisher's official version see: http://dx.doi.org/10.1017/S0031182007003307. For Open Access version see: http://archimer.ifremer.fr/doc/00000/3562/).

Lynch, S.A., S. Wylde, D.V. Armitage, M.F. Mulcahy and S.C. Culloty. 2005a. The susceptibility of young, prespawning oysters, Ostrea edulis, to Bonamia ostreae. Journal of Shellfish Research 24: 664. (Abstract).

Lynch, S.A., D.V. Armitage, S. Wylde, M.F. Mulcahy and S.C. Culloty. 2005b. The susceptibility of young, prespawning oysters, Ostrea edulis, to Bonamia ostreae. Journal of Shellfish Research 24: 1019-1025.

Lynch, S.A., D.V. Armitage, S. Wylde, M.F. Mulcahy and S.C. Culloty. 2006. Inventory of benthic macroinvertebrates and zooplankton in several European Bonamia ostreae-endemic areas and their possible role in the life cycle of this parasite. Marine Biology 149: 1477–1487.

Lynch, S.A., D.V. Armitage, J. Coughlan, M.F. Mulcahy and S.C. Culloty. 2007. Investigating the possible role of benthic macroinvertebrates and zooplankton in the life cycle of the haplosporidian Bonamia ostreae. Experimental Parasitology 115: 359-368.

Lynch, S.A., M.F. Mulcahy and S.C. Culloty. 2008. Efficiency of diagnostic techniques for the parasite, Bonamia ostreae, in the flat oyster, Ostrea edulis. Aquaculture 281: 17-21.

Lynch, S.A., E. Abollo, A. Ramilo, A. Cao, S.C. Culloty and A. Villalba. 2010. Observations raise the question if the Pacific oyster, Crassostrea gigas, can act as either a carrier or a reservoir for Bonamia ostreae or Bonamia exitiosa. Parasitology 137: 1515-1526.

Martin, A.G., A. Grard, N. Cochennec and A. Langlade. 1993. Selecting flat oysters, Ostrea edulis, for survival against the parasite Bonamia ostreae: assessment of the resistance of a first selected generation. Special Publication of the European Aquaculture Society 18: 545-554.

Marty, G.D., S.M. Bower, K.R. Clarke, G. Meyer, G. Lowe, A.L. Osborn, E.P. Chow, H. Hannah, S. Byrne, K. Sojonky and J.H. Robinson. 2006. Histopathology and a real-time PCR assay for detection of Bonamia ostreae in Ostrea edulis cultured in western Canada. Aquaculture 261: 33-42.

McArdle, J.F., F. McKiernan, H. Foley and D.H. Jones. 1991. The current status of Bonamia disease in Ireland. Aquaculture 93: 273-278.

Meuriot, E. and H. Grizel. 1984. Note sur l'impact conomique des maladies de l'hutre plate en Bretagne. Rapports Techniques de l'Institut Scientifique et Technique des Pches Maritimes 12: 1-20. (In French).

Mialhe, E., E. Bachre, D. Chagot and H. Grizel. 1988a. Isolation and purification of the protozoan Bonamia ostreae (Pichot et al. 1980), a parasite affecting the flat oyster Ostrea edulis L. Aquaculture 71: 293-299.

Mialhe, E., V. Boulo, R. Elston, B. Hill, M. Hine, J. Montes, P. van Banning and H. Grizel. 1988b. Serological analysis of Bonamia in Ostrea edulis and Tiostrea lutaria using polyclonal and monoclonal antibodies. Aquatic Living Resources 1: 67-69.

Montes, J. 1990. Development of Bonamia ostreae parasitosis of flat oyster, Ostrea edulis, from Galicia, northwest Spain. In: Perkins, F.O. and T.C. Cheng (eds), Pathology in Marine Science. Academic Press, San Diego, pp. 223-227.

Montes, J. 1991. Lag time for the infestation of flat oyster (Ostrea edulis L.) by Bonamia ostreae in estuaries of Galicia (N.W.Spain). Aquaculture 93: 235-239.

Montes, J. and I. Melndez. 1987. Donnes sur la parasitose de Bonamia ostreae chez l'hutre plate de Galice, cte nord-ouest de l'Espagne. Aquaculture 67: 195-198. (French, English abstract.).

Montes, J., A. Villalba, M.C. Lopez, M.J. Carballal and S.G. Mourelle. 1991. Bonamiasis in native flat oysters (Ostrea edulis L.) from two intertidal beds of the Ortigueira Estuary (Galicia, N.W. Spain) with different histories of oyster culture. Aquaculture 93: 213-224.

Montes, J., M.J. Carballal, M.C. Lopez and S.G. Mourelle. 1992. Incidence of bonamiasis in flat oyster, Ostrea edulis L., cultured in Galicia (N.W. Spain). Aquaculture 107: 189-192.

Montes, J., R. Anadn and C. Azevedo. 1994. A possible life cycle for Bonamia ostreae on the basis of electron microscopy studies. Journal of Invertebrate Pathology 63: 1-6.

Montes, J., M.A. Longa and A. Lama. 1996. Prevalence of Bonamia ostreae in Galicia (NW Spain) during 1994. Bulletin of the European Association of Fish Pathologists 16: 27-29.

Montes, J., B. Ferro-Soto, R.F. Conchas and A. Guerra. 2003. Determining culture strategies in populations of the European flat oyster, Ostrea edulis, affected by bonamiosis. Aquaculture 220: 175-182.

Morga, B., I. Arzul, B. Chollet and T. Renault. 2009. Infection with the protozoan parasite Bonamia ostreae modifies in vitro haemocyte activities of flat oyster Ostrea edulis. Fish and Shellfish Immunology 26: 836-842. (For publisher's official version see: http://dx.doi.org/10.1016/j.fsi.2009.03.018. For Open Access version see: http://archimer.ifremer.fr/doc/00000/6271/).

Morga, B., I. Arzul, N. Faury, A. Segarra, B. Chollet and T. Renault. 2011. Molecular responses of Ostrea edulis haemocytes to an in vitro infection with Bonamia ostreae. Developmental and Comparative Immunology 35: 323-333.

Morga, B., I. Arzul, N. Faury and T. Renault. 2010. Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish and Shellfish Immunology 29: 937-945.

Mortensen, S., I. Arzul, L. Miossec, C. Paillard, S. Feist, G. Stentiford, T. Renault, D. Saulnier and A. Gregory. 2007. Molluscs and crustaceans, 5.3.11 Bonamiosis due to Bonamia ostreae. In: Raynard, R., T. Wahli, I. Vatsos, S. Mortensen (eds.) Review of disease interactions and pathogen exchange between farmed and wild finfish and shellfish in Europe. VESO on behalf of DIPNET, Oslo. p. 358-366. (For electronic publication see www.dipnet.info under "Documents", subgroup "Reports and project deliverables").

Morvan, A., E. Bachre, P.P. da Silva, P. Pimenta and E. Mialhe. 1994. In vitro activity of the antimicrobial peptide magainin 1 against Bonamia ostreae, the intrahemocytic parasite of the flat oyster Ostrea edulis. Molecular Marine Biology and Biotechnology 3: 327-333.

Morvan, A., S. Iwanaga, M. Comps and E. Bachre. 1997. In vitro activity of the limulus antimicrobial peptide tachyplesin 1 on marine bivalve pathogens. Journal of Invertebrate Pathology 69: 177-182.

Mourton, C., V. Boulo, D. Chagot, D. Hervio, E. Bachre, E. Mialhe and H. Grizel. 1992. Interactions between Bonamia ostreae (Protozoa: Ascetospora) and hemocytes of Ostrea edulis and Crassostrea gigas (Mollusca: Bivalvia): in vitro system establishment. Journal of Invertebrate Pathology 59: 235-240.

Naciri-Graven, Y., A.-G. Martin, J.-P. Baud, T. Renault and A. Grard. 1998. Selecting the flat oyster Ostrea edulis (L.) for survival when infected with the parasite Bonamia ostreae. Journal of Experimental Marine Biology and Ecology 224: 91-107.

Naciri-Graven, Y., J. Haure, A. Grard and J.-P. Baud. 1999. Comparative growth of Bonamia ostreae resistant and wild flat oyster Ostrea edulis in an intensive system. II. Second year of experiment. Aquaculture 171: 195-208.

Narcisi, V., I. Arzul, D. Cargini, F. Mosca, A. Calzetta, D. Traversa, M. Robert, J.P. Joly, B. Chollet, T. Renault and P.G. Tiscar. 2010. Detection of Bonamia ostreae and B. exitiosa (Haplosporidia) in Ostrea edulis from the Adriatic Sea (Italy). Diseases of Aquatic Organisms 89: 79–85.

O'Neill, G., S.C. Culloty and M.F. Mulcahy. 1998. The effectiveness of two routine doagnostic techniques for the detection of the protozoan parasite, Bonamia ostreae (Pichot et al. 1980). Bulletin of the European Association of Fish Pathologists 18: 117-120.

Pascual, M., A.-G. Martin, E. Zampatti, D. Coatanea, J. Defossez and R. Robert. 1991. Testing of the Argentina oyster, Ostrea puelchana, in several French oyster farming sites. International Council for Exploration of the Sea C.M.1991/K:30: 17 pp.

Pichot, Y., M. Comps, G. Tig, H. Grizel and M.A. Rabouin. 1980. Recherches sur Bonamia ostreae gen. n., sp. n., parasite nouveau de l'hutre plate Ostrea edulis L. Revue des Travaux de l'Institut des Pches Maritimes. 43: 131-140. (French).

Poder, M., M. Auffret and G. Balouet. 1983. Etudes pathologiques et epidemiologiques des lesions parasitaires chez Ostrea edulis: Premiers resultats d'un recherche prospective comparative chez les principales especes de mollusques des zones ostreicoles de Bretagne nord. (Pathological and epidemiological studies of parasitic diseases of Ostrea edulis: First results from a retrospective and comparative research of main species of molluscs in oyster farm in North Brittany.).  Bases biologiques de l'aquaculture, Montpellier, 12-16 decembre 1983, IFREMER. Actes de Colloques 1: 125-138. (In French, URL: http://archimer.ifremer.fr/doc/00000/1182/).

Reece, K.S., M.E. Siddall, N.A. Stokes and E.M. Burreson. 2004. Molecular phylogeny of the haplosporidia based on two independent gene sequences. The Journal of Parasitology 90: 1111-1122.

Renault, T. 2008. Genomics and mollusc pathogens: trends and perspective. Journal of Veterinary Clinical Science 1: 4-14. (For Open Access version see http://archimer.ifremer.fr/doc/00000/4574/).

Renault, T., N. Cochennec and H. Grizel. 1995. Bonamia ostreae, parasite of the European flat oyster, Ostrea edulis, does not experimentally infect the Japanese oyster, Crassostrea gigas. Bulletin of the European Association of Fish Pathologists 15: 78-80.

Robert, R., M. Borel, Y. Pichot and G. Trut. 1991. Growth and mortality of the European oyster Ostrea edulis in the Bay of Arcachon (France). Aquatic Living Resources 4: 265-274.

Robert, M., C. Garcia, B. Chollet, I. Lopez-Flores, S. Ferrand, C. Francois, J.P. Joly and I. Arzul. 2009. Molecular detection and quantification of the protozoan Bonamia ostreae in the flat oyster, Ostrea edulis. Molecular and Cellular Probes 23: 264-271. (For publisher's official version see: http://dx.doi.org/10.1016/j.mcp.2009.06.002. For Open Access version see: http://archimer.ifremer.fr/doc/00000/6934/).

Rogan, E., S.C. Culloty, T.F. Cross and M.F. Mulcahy. 1991. The detection of Bonamia ostreae (Pichot et al. 1980) in frozen oysters (Ostrea edulis L.) and the effect on the parasite condition. Aquaculture 97: 311-315.

Rogier, H., D. Hervio, V. Boulo, C. Clavies, E. Hervaud, E. Bachre, E. Mialhe, H. Grizel, B. Pau and F. Paolucci. 1991. Monoclonal antibodies against Bonamia ostreae (Protozoa: Ascetospora), an intrahaemocytic parasite of flat oyster Ostrea edulis (Mollusca: Bivalvia). Diseases of Aquatic Organisms 11: 135-142.

Thebault, A., N. Cochennec, I. Arzul and T. Renault. 2003. Establishing causal link between an infectious agent and mortalities in marine molluscan aquaculture on the example of Bonamia ostreae and Herpsvirosis in oysters: proposal of a causal grid analysis. In: 10th Symposium of the International Society for Veterinary Epidemiology and Economics, Vina del Mar, Chile, November 2003, pp. 137-140. (For electronic versions see http://www.sciquest.org.nz/node/63004 and http://archimer.ifremer.fr/doc/00000/3341/)

Tig, G. and H. Grizel. 1982 (1984). Essai de contamination d'Ostrea edulis Linn par Bonamia ostreae (Pichot et al., 1979) en rivire de Crach (Morbinhan). Revue des Travaux de l'Institut des Pches Maritimes. 46: 307-314. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/1843/).

Tig, G., H. Grizel, A.G. Martin, A. Langlade and M.A. Rabouin. 1981. Situation pidmiologique conscutive la prsence du parasite Bonamia Ostreae en Bretagne - evolution au cours de l'anne 1980. Science et Pche, Bulletin Institute Pches Maritimes 315: 13-20. (In French, for Open Access version see http://archimer.ifremer.fr/doc/00000/7018/).

Tig, G., H. Grizel, M.A. Rabouin, N. Cochonnec, G. Audic and A. Langlade. 1982. Maladie hmogtaire de l'hutre plate cause par Bonamia ostreae : volution de la situation pizootiologique en Bretagne au cours de l'anne 1981. Science et Pche, Bulletin Institute Pches Maritimes 328: 3-13. (In French, for Open Access version see http://archimer.ifremer.fr/doc/00000/7025/).

Tig, G., H. Grizel, N. Cochennec and M.A. Rabouin. 1984. Evolution de la situation pizootiologique en Bretagne en 1983 suite au dveloppement de Bonamia ostreae. Conseil International pour l'Exploration de la Mer C.M. 1984/F:14: 14 pp. (In French with English abstract, for Open Access version see http://archimer.ifremer.fr/doc/00000/4971/).

Van Banning, P. 1985. Control of Bonamia in Dutch oyster culture. In: Ellis, A.E. (ed), Fish and Shellfish Pathology. Academic Press, London, pp. 393-396.

Van Banning, P. 1987. Further results of the Bonamia ostreae challenge tests in Dutch oyster culture. Aquaculture 67: 191-194.

Van Banning, P. 1988. Management strategies to control diseases in the Dutch culture of edible oysters. American Fisheries Society Special Publication 18: 243-245.

Van Banning, P. 1990. The life cycle of the oyster pathogen Bonamia ostreae with a presumptive phase in the ovarian tissue of the European flat oyster, Ostrea edulis. Aquaculture 84: 189-192.

Van Banning, P. 1991. Observations on bonamiasis in the stock of the European flat oyster, Ostrea edulis, in the Netherlands, with special reference to the recent developments in Lake Grevelingen. Aquaculture 93: 205-211.

Xue, Q. and T. Renault. 2000. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacific oyster, Crassostrea gigas, hemolymph. Journal of Invertebrate Pathology 76: 155-163.

Zabaleta, A.I. and B.J. Barber. 1996. Prevalence, intensity and detection of Bonamia ostreae in Ostrea edulis L. in the Damariscotta River area, Maine. Journal of Shellfish Research 15: 395-400.

Citation Information

Bower, S.M. (2011): Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish: Bonamia ostreae of Oysters


URL: ftp://devios-inter.dfo-mpo.gc.ca/science/species-especes/shellfish-coquillages/diseases-maladies/pages/bonostoy-eng.htm

Date last revised: April 2011
Comments to Susan Bower